Large Global Solutions for Nonlinear Schrödinger Equations II, Mass-Supercritical, Energy-Subcritical Cases
نویسندگان
چکیده
In this paper, we consider the defocusing mass-supercritical, energy-subcritical nonlinear Schrodinger equation, $$\begin{aligned} i\partial _{t}u+\Delta u= |u|^p u, \quad (t,x)\in {\mathbb {R}}^{d+1}, \end{aligned}$$ with $$p\in (\frac{4}{d},\frac{4}{d-2})$$ . We prove that under some restrictions on d, p, any radial function in rough space $$H^{s_0}({\mathbb {R}}^d),\textit{for } s_0<s_c$$ support away from origin, there exists an incoming/outgoing decomposition, such initial data outgoing part leads to global well-posedness and scattering forward time; while incoming backward time. The proof is based Phase-Space analysis of dynamics.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
2 00 6 Global Existence and Scattering for Rough Solutions to Generalized Nonlinear Schrödinger Equations On
We consider the Cauchy problem for a family of semilinear defocusing Schrödinger equations with monomial nonlinearities in one space dimension. We establish global well-posedness and scattering. Our analysis is based on a four-particle interaction Morawetz estimate giving a priori Lt,x spacetime control on solutions.
متن کاملA minimal energy tracking method for non-radially symmetric solutions of coupled nonlinear Schrödinger equations
We aim at developing methods to track minimal energy solutions of time-independent mcomponent coupled discrete nonlinear Schrödinger (DNLS) equations. We first propose a method to find energy minimizers of the 1-component DNLS equation and use it as the initial point of the m-component DNLS equations in a continuation scheme. We then show that the change of local optimality occurs only at the b...
متن کاملExistence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...
متن کاملOf Nonlinear Schrödinger Equations
The authors suggest a new powerful tool for solving group classification problems, that is applied to obtaining the complete group classification in the class of nonlinear Schrödinger equations of the form iψt +∆ψ + F (ψ,ψ ∗) = 0.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2021
ISSN: ['0010-3616', '1432-0916']
DOI: https://doi.org/10.1007/s00220-021-03971-w